
AVF Control Number: AVF-VSR-017
SZI-AVF-017C

LOT1C FILEco

Ada COMPILER
VALIDATION SUMMARY REPORT:

Certificate Number: 88030511.09046
Siemens AG, Muenchen

Siemens BS2000 Ada Compiler, V1,O
Siemens 7.5701)

Completion of On-Site Testing:
5th March 1988

Prepared BY:
IABG m~bH., Dept SZT
Einsteinstrasse 20

8012 Ottobrunn
West Germany

Prepared For:
Ada Joint Program Office DI

United States Department of DefenseD T c
Washington, D.C. 20301-3081 L CT

S JH
Ada Is a registered trademark of the United States Government
(Ada Joint Program Office).

1w PW% I 88 8 31 02 9

. SE V UNCLASSIFIED
SE -Up,_ IS D -S tC ___N

REPORT DOCUE[NIAII ON PAGE RA J.ITDN 'TO%

1. - --j ,um 1i CNc 3. PECLPIENT'S CA'ALOG NUMBER

4 . T'l . ,a-So , 5 ,te) s. TYPE OF REPORT & PERIOn COVERED

Ada Compiler Validation Summarx Re ort: 5 Maren 1988 to 5 March 1989

SiemensAG, Muenchen, Siemens zS20D0 Ada
Coroiler, VI.0, Siemens 7.570P under BS2000, 6. PERFORMING ORG. REPORT NUMBER
V7.5 (Host and Taraet).
SMUTOR~isJ 8 CONTRACT OR GRANT NUMBER(s)

TABG,
Ottobrunn, Federal Republic of Germany

.9. PEROR4y ;% ORSCN:'A':ON AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK
AREA & WORK UNIT NUMBERS

IABG,
. Ottobrunn, Federal Republic of Germany

CONV OL'-ING O-FICE NAME AND ADDPESS 12. REPORT DATE

Ada Joint Proaram Office 5 March 1988
United States Deoartment of Defense 13. NUMbtR OF PAuES
Washington, DC 20301-3081 4 p.

14. MONITORING AGENCY NLM-- & 3 ODRESSofdfferent from Controlling Office) 15. SECURITY CLASS (of this report)
, U NC!. A SI FI Ff

IABG, 15a. RCEASS-FICATION/DOWNGRADING

Ottobrunn, Federal Republic of Germany N/A

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20. If different from Report)

UNCLASSiFIED

13. SUP EMErkjN7ARy NOTES

K- . -_ ' :S (Continue on reve,5 sde if necessary and identify by block number)

*,."Ada Programming languaae, Ada Compiler Validation Summary Report, Ada
-. Comoiiler Validation Capability, ACVC, Validation Testing, Ada

7. Validation Office, AVO, Ada Validation Facility, AVF, ANSI/MIL-STD-
* 1815A, Ada Joint Program Office, AJPO

2' . -5- RAC T (Continue on re'.ersc side jf necessary and identify by block number)

Siemns BS200(i Ad Compiler, Vi 0, Siemens AG, Muenchen, TABG, Siemens 7.570P under BS2000, '.'T6
l'Ho-.t oand Target),ACVC 1 9

DD U 1473 EDITION)Fl NOV h5 IS rW'O :TF

1 JAN ;,'N :IS2-- 6.1 UNCLASSIFED
-71--_7. CLASSIFICATION OF THIS PAGE (When Data Entereo)

... %

r, C tr a~ 'atIC cr S Ur, a ry R e 0c. t:

m," c i I er N met S iemenis BEc" 0 A a or ,p , I e,r _e re .ees8200 Ada Compi er ,.C

Cert i-icate Number: 880305i 1.09046

--* Host:

Si enens 7.570F under

V 7 . 6
Target:

Siemens 7.570D under
S2000,

Testing Completed 5th March 1988 Using ACVC 1.9

This report has been reviewed and is approved.

IABG m b H., Dept SZT
Dr. H. Hummel
Einsteinstrasse 20
8012 Ottobrunn
West Germany

%N.~
daVaidtion 0 roarization

Dr. Johr F. Kramer
Institute for Defense Analyses
Alexandria VA 22311

,.
Ada J int Prog atr., O { ice

Virginia L. Castor
Director
Depatme, t c Defense

',ashir g or D2 '0 C1

* Ada is a registe ed trademark of the United States Government
(Ada Joint Program. Oi; ice).

"

"V%

*. , .. * -' - -Ji.- . - , ,,. " ,- ., r ,

- - - - - ,L : - F ' .- : t ' -- J . rY S h-w. flt'W'i q us:' C9 M , ** St. L " p- M . J LiMn , s .- - . . :.; -.

N ENTENTS

CHAPTEP 1 INTRO.UCTION

P 9 .URPOSE OF THIS VALIDATION SUMMARY REPORT 1-2
USE OF THIS VALIDATION SUMMARY REPORT.. I-2

.3 REFERENCES 1-3
.4 [EFINIT7ON OF TERMS 1-4

S1.5 ACVC TEST CLASSES 1-5

CHAPTER 2 CONFIGURATION INFORMATION

2.1 CON'FIGURATION TESTED2-I
L. IMPLEMENTATION CHARACTERISTICS2-2

CHAPTER 3 TEST INFORMATION

* 3. TEST RESULTS 3-1
3. 2 SUMMARY OF TEST RESULTS BY CLASS 3-1
3.3 SUMMARY OF TEST RESULTS BY CHAPTER 3-2
3.4 VITHDRAVN TESTS 3-2
3.5 INAPPLICABLE TESTS 3-2
3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS 3-4
3.7 ADDITIONAL TESTING INFORMATION3-5
3.7.1 Prevalidation 3-5
3.7.2 Test Method 3-5
3. 7.3 Test Site 3-6

APPENDIX A DECLARATION OF CONFORMANCE

APPENDIX B APPENDIX F OF THE Ada STANDARD

APPENDIX C TEST PAPAMETEPS

APPENDIX Pl 'T HDPPW'N TESTS

A ccesslom For
* NTIS GR"&I

PLf ... v, o
DTIC TAR

- ~~Inaxniunted l
Ju3tlUantilon

. Digt Special

r = -

C HAPTER 1

INT RO D u CT I ON

This Validation Summary Report V(VSF describes the e .tent to which a
specific Ada compiler conforms to the Ada Standard, ANSI!MIL-STD-1815A.
This report explains all technical terms used within it and thoroughly
reports the results cf testing this compiler using the Ada Compiler
Validation Capability (ACVC). An Ada compiler must be implemented
according to the Ada Standard, and any implementation-dependent features

-. must conform to tre requirements of the Ada Standard. The Ada Standard
must be implemented Jr, its entirety, and nothing can be implemented that is

* not in the Standard.

. Even though all validated Ada copilers conform to the Ada Standard, it

must be understood that some differences do exist between implementations.
The Ada Standard permits some implementation dependencies--for example, the
maximum length of identifiers or the maximum values of integer types.
Other differences between compilers result from the characteristics of
particular operating systems, hardware, or implementation strategies. All
the dependencies observed during the process of testing this compiler are
given in this report.

The information in this report is derived from the test results produced
during validation testing. The validation process includes submitting a
suite of standardized tests, the ACVC, as inputs to an Ada compiler and
evaluating the results. The purpose cf validating is to ensure conformity

, of the compiler to the Ada Standard by testing that the compiler properly
implements legal language constructs and that it identifies and rejects

illegal language constructs. The testing also identifies behavior that is
implementation dependert but permitted by the Ada Standard. Six classes of
tests are used. These tests are designed to perform checks at compile
time, at li k time, and during execution.

12%

0"

4.-

TNT RO~cCUC'

.1 PLRPOSE OF TH'S VALiDA2:ON SOIMMARY REP-,RT

This VSR documents the results of the validation testing performed or an
Ada corpiler. Testing .as carried out fcr the foliowing purposes:

To attempt to identify any language constructs supported by the
compiler that do not conform to the Ada Standard

To attempt to identify any language constructs not supported by
tre compiler but required by the Ada Standard

To determine that the implementation-dependent behavior is allowed
by the Ada Standard

Testing of this compiler was conducted under the direction of the AVF
according to procedures established by the Ada Joint Program Office and
administered by the Ada Validation Organization (AVO) On-site testing was
completed 5th March 1988 at SIEMENS AG at Muenchen 83, Germany.

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the AVO may
make full and free public disclosure of this report. In the United States,
this is provided in accordance with the "Freedom of Information Act" (5
U.S.C. 552). The results of this validation apply only to the computers,
operating systems, and compiler versions identified in this report.

The organizations represented on the signature page of this report do rot
Jrepresent or warrant that all statements set forth in this report are

accurate and complete, or that the subject compiler has no nonconfornities
to the Ada Standard other than those presented. Copies of this report are
available to the public from:

• "Ada In ormation Clearinghouse
Ada Joint Program Office
OUSDRE

* The Pentagon, Rm 3D-139 (Fern Street)

Vashington DC 20301-3081

or frorm:

IABG m.b.H., Dept SZT
• E nsteinstrasse 20

8012 Ottobrun n
S est Germany

0

1-2

%
I.. WIV

"N.

* NTPJDUCT/ON

O: Guest s rea--dip t s repcrt or the validation test results should be
aec'eo tC :he AV: isted above or to:

Ada Validation Organization
Institute ior Defense Analyses
1801 North Beauregard Street
Ale adnria VA 22311

',. .2 PEFE FNCEq

. Reference Manual for the Ada Proqr Lani n Langag9,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

2. 5da Compjler Validation Procedures nd guidt!int, Ada Joint
Program Office, i January 1987.

3. Ada rompiler Validation Capabilit Imty ementers' Guide, SofTech,

Inc., December 1986.

4. Ada Con2iler Validation Capgbility User's Guide, December 1986.

I

1-3

N-

INTROUCTION

1.4 DEFI N: T:T OF TE RP

ACVC The Ada Compi ler Va'Idat]on CaoabV iyv. Te set of Aca
Programs that tests the conformit, of an Ada cotro !er to tPe

Ada programming language.

Ada Ar Ada Commentary contains all information relevant to the

Commentary point addressed by a comment on the Ada Standard. These
comments are giver a unioue identification number r v ,g tne
form Al-ddddd.

Ada Standard ANS]!MIL-STD-1815A, February 1983 and ISO 8E,52-1987.

Applicant The agency requesting validation.

AVF The Ada Validation Facility. The AVF is responsible for

, conducting compiler validations according to procedures
contained in the Ada Compiler Validation Procedures and
Guidelires.

AVO The Ada Validation Organization. The AVO has oversight
authority over all AVF practices for the purpose of
maintaining a uniform process for validation of Ada
compilers. The AVO provides administrative and technical
support for Ada validations to ensure consistent practices.

Compiler A processor for the Ada language. In the context of this
report, a compiler is any language processor, including
cross-compilers, translators, and interpreters.

Failed test An ACVC test for whicth the compiler generates a result that
demonstrates nonconformity to the Ada Standard.

Host The computer on which the compiler resides.

Inapplicable An ACVC test that uses features of the language that a
test compiler is not renuired to support or may legitimately

support in a 6ay coher than the one expected by the test.

Passed test A n ACVC test for which a compiler generates the expected
r esu It.

Target The computer for which a compiler generates code.

Test A progra that ch cks a compiler's conformity regarding a

Andogar. tha the0cneto hsrprtetr 5dt
,a - icular,, eature or a combination of features to the Ada
5tandard . IFi the conte).t1 of this report, the t erm, is used lo

e'Igna e a s i n4 e t e-t , w i cK r ay comprise one or Tore

r a r A-1 4CV test found to be i, correct and not used to chec
test orc, r, s tC the Ada randard. A test may be incorrect

I-4

-P - -- --- - ------ ~' ~ ~ ~ - . -w

because t a s an. 'rvai o test cobject I e, e ils tc meet it
te t object ve, or cortains ii legaI or erroneous use of the

a r, 0 a g e

,.5 ACVC TEST CLAcSES

Conformit to tne Ada S anIard t measured using the ACVC. The ACVC
contains both legal and !egal Ada programs structured irto six test
classes: A, B, C, D, E, and L. The first letter of a test name identifies
the class to which it belongs. Class A, C, D, and E tests are executable,
and special orogram units are used to report their results during
execution. Class B tests are expected to produce compilation errors.
Class L tests are expected to produce compilation or link errors.

Class A tests check that legal Ada programs can be successfully compiled
and executed. There are no explicit program components in a Class A test
to check semantics. For example, a Class A test checks that reserved words

44 of another language (other than those already reserved in the Ada language)
are not treated as reserved words by an Ada compiler. A Class A test is
passed if no errors are detected at compile time and the program executes
to produce a PASSED message.

Class B tests check that a compiler detects illegal language usage. Class
B tests ae rot executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that every syntax or
semantic error in the test is dete ted. A Class B test is passed if every
illegal construct that it contains is detected by the compiler.

Class C tests check that leqal Ada oroorams can be correctly compiled and
executed. Each Class C test is self-checking and produces a PASSED,
FAILED, or NOT APPLICABLE message indicating the result when it is

* executed.

Class D tests check the compilation and execution capacities of a compiler.
Since there are no capacity requirements placed on a compiler by the Ada
Standard for some parameters-- or example, the number of identifiers

* permitted in a compilatior or the number of units in a library--a comp il r
may refuse to compile a Class D test and still be a conforming compi er.
Therefore, if a. Class D test fa:Is to compile because the capacity of the
compiler is exceeded, tre test is classified as inapplicable. If a Class D
test compiles scceis ul , is self-checking and produces a PASSED or
FAILED message duri ng e ecut or .

Ea:h Class E test is se-chec~ing and produces a NOT APPLICABLE, PASSED,
. or FAILED message wrer. it is compiled and executed. However, the Ada

Stanraard Pe.s acr ml.,e rtr to r.etet procrams containing some
- featurs acss: s by as. E tp's du:r:Q como iation . Therefore, a Clas.

E test s Passed ty a ccm c e ! i t is co piled SurCessful y and executes
* to C r tduce a P E ; r esa a e. i t I s rejected by the compiler for an

a-

.

q VOW W-

INT RfL,,C T O

Class L tests chec t hat incomplete or illegal Ada programs involving
multiple, senarately comiled units are detected and not allowed to
execute. Class L tests a-e compiled separately and execution is attempted.
A Class L test oasses if it is rejected at link time--that is, an attempt
to e~ecute the iai n program must generate ar; error message before any
declaratio n s i n the main program or any units referenced by the main
program are eIabora.ed

Two library units, the package REPORT and the procedure CHECKFILE, support
the self-checking features of tne executable tests. The package REPORT
provides the mechanism by which executable tests report PASSED, FAILED, or
NOT APPLICABLE results. It also provides a set of identity functions used
to defeat some compiler optimizations allowed by the Ada Standard that
would circumvent a test objective. The procedure CHECK FILE is used to
check the contents of text files written by some of the Class C tests for
chapter 14 of the Ada Standard. The operation of REPORT and CHECKFILE is
checked by a set of executable tests. These tests produce messages that

%," ane examined to verify that the units are operating correctly. If these
units are not operating correctly, then the validation is not attempted.

0The text of the tests in the ACVC follow conventions that are intended to

ensure that the tests are reasonably portable without modification. For

lines with a maximum length of 72 characters, use small numeric values, and
place features that may not be supported by all implementations in separate
tests. However, some tests contain values that require the test to be
customized according to implementation-specific values--for example, an
illegal file name. A list of the values used for this validation is
provide- in Appendix C.

A compiler must correctly process each of the tests in the suite and

demonstrate conformity to the Ada Standard by either meeting the pass
. , criteria given for the test or by showing that the test is inapplicable to

the implementation. The applicability of a test to an implementation is
considered each time the implementation is validated. A test that is
inapplicable for one validation is not necessarily inapplicable for a
subsequent validation. Any test that was determined to contain an illegal

* language construct or an trroneous 'anguage construct is withdrawn from the
ACVC and, therefore, is not used in test;'g a compiler. The tests
withdrawn at tne time of this validat ion are given in Appendix D.

L=-.0

L-.'V

--* .- '°

CHAPTER 2

CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED

The candidate compilation system for this validation was tested under the
following configuration:

Compiler: Siemens ES2000 Ada Compiler, VI.0

* ACVC version: 1.-

Certificate Number: B80305il.0?046

Host Ccmputer:

Machine: Siemens 7.570P

Operating System: BS2000
V7 .6

Memory Size: 32 MB

Target Computer:

~J.Machine: Siemens 7.570P

Operating System: ES2000: . ' .V 7 .6

Memory Size: 32 MB

2-I1"2

0%.

- V- - - RLP'V ;W. . -

CCNFGIL FATION INOPMA 7 T nf

A'.

S.: I PLEMENTATION CHARACTERTSTI'-

V . One of the ourposes of alidat ing compilers is to detrmint the behavior of

a com P.i er in tnose areas of the Ada Standard that permit implementations

to differ. Ciass D and E tests specifically check for such implementation

differences. However, tests in other classes also characterize an
implementat on. T e tests demonstrate the following characteristics:

Capacities.

The compiler correctly processes tests containing loop statements
nested to 65 levels, block statements nested to 65 levels, and
recursive procedures separately compiled as subunits nested to 17
levels, It correctly processes a compilation containing 723

variables in the same declarative part. (See tests D55A03A..H (8

tests), D56001E, D64005E..G (3 tests), and D29002K.)

.Universal intecer calculations.

* An implementation is allowed to reject universal integer
calculations having values that exceed SYSTEM.MAX INT. This
implementation processes 64 bit integer calculations. (See tests
)D4AOO2A, D4A002B, D4AOO4A, and D4AO04B.)

Predefined types.

This implementation supports the additional predefined type
SHORT INTEGER, in the package STANDARD. (See tests B86001C and

%' B8600 i D.)

Based Iiterals.

An implementation is allowed to reject a based literal with a
value exceeding SYSTEM.MAX INT during compilation, or it may raise
NUMERICERROP or CONSTRAINTERROR during execution. This
*mlemertation rases CONSTRAINT ERROR durin execution. (See
e sat Er s A

Expression , aiuat on,

t PoparentIy no default initializaticr expressions for record
components are evaluated before any value is checked to belong to
a co~onent's subtype. (See test C32117A.)

.WAssigrme rts orsubtypes arie performed w'ith the same prec ision as
the base type. (See test C35712B.)

-'..-"2-2

,- v "~~~~~~~~~~~~~~.-" ' '"" "- " "" "" "" '""" . . -.. ". .-... o-.....
~~~- -- - -- , . , ,,, , - • .. - .* -.-. ,.. .- ..- .. - . .. -,. -- .. .. .-.... .. " -.,. -- , .... . ,



* CONFiGUPAilON !NFORMAIIO.

,s m emera1 on uses ro extra bits for extra precision. T,,s
, e meer atat or uses all extra bits for extra range. (See test

-. -35cC3A.

Eome:imes CONSTRAIN7_ERROR is raised when an integer literal
o erar; d r, a comparison or membership test is outside the range of
the sase type. See test C45232A.)

Apparently CON'TRAINTERROR is raised when a literal operand in a
'ideo-point comparison or membership test is outside the range of
the base :ype. (See test C45252A.)

Apparently underflow is not gradual. (See tests C45524A..Z.)

R ounding.

The method used for rounding to integer is apparently round away
from zero. (See tests C46012A.,Z.)

. The method used for rounding to longest integer is apparently
0 round a~ay from zero. (See tests C46012A..Z.)

The method used for rounding to integer in static universal real
expressions is apparently round away from zero. (See test
C4AO!4A.)

2-3

-;;.

• .



CONFIGURATION INFCRMATION

Array types.

An implementat on s alIowed to raise NUMERICERROR or
CONSTRAINTERROR for an array having a 'LENGTH that eyceet,
STANDARV.INTEGER'LAST and/or SYSIEM.MAXINT. For iS
i mplIemeniat icon:

Eclaration of an array type or subtype declaration with more than
SYSTEM.MAX _INT components raises no exception. (See test
C36003A.

NUMERIC-ERROR is raised when 'LENGTH is applied to an array type
with INTEGER'LAST + 2 components. (See test C36202A.)

NUMERIC-ERROR is raised when 'LENGTH is applied to an array type
with SYSTEM.MAXINT + 2 components. (See test C36202B.)

A packed BOOLEAN array having a 'LENGTH exceeding INTEGER'LAST
raises NUMERIC-ERROR when the arrdy type is declared. (See test

* C52103X.)

A packed two-dimensional BOOLEAN array with more than INTEGER.'LAST
components raises NUMERICERROR when the array type is declared.
(See test C52104Y.)

A null array with one dimension of length greater than
INTEGER'LAST may raise NUMERIC-ERROR or CONSTRAINIERROR either
when declared or assigned. Alternatively, an implementation may
accept the declaration. However, iegths must match in array
slice assignments. This implementation raises NUMERIC ERROR when
the array type is declared. (See test E52103Y.)

In assigning one-dimensional array types, the expression appears
to be evaluated in its entirety before CONSTRAINT-ERROR is raised
when checking whether the expression's subtype is compatible with
the target's subtype. In assigning two-dimensional array types,

.-..- the expression does not appear to be evaluated in its entirety
* before CONSTRAINT-ERROR is raised when checking whether the
'-'" expression's subtype is compatible with the target's subtype.

(See test C520i3A.)

Discriminated types.

During compilation. an implementation is allowed to either accept
or reject an iricomolete type with discriminants that is used in an
access type deinltion with a compatible discriminant constraint.
This impiementatior accepts such subtype indications, (See test
E 3 104 A.)

In assign in record tyQes with discriminants, the expression
appears to be evalua*e d in its entirety before CONSTRAINT ERROR is
raised wren checking whether the expressior,'s su type is

2-4

- - ,w .i,*' ,****x.- * i ' ' " ," "".' ,"- " .'
" " - \'""""."" '-"." -2',



-~~~rvmr -V -E I'W -Jr in~W'W~~'Y-~ .

VC

CONFIGUFATION INFORMATION

comatible with the target's subtype. (See test C52CII3A.)

Aggregates.

in the e~aluation oi a multi-dimensional aggregate, all choices
appear to be evaluated before cthecking against the index type.
(See tests C43207A and C432076.)

in the e valuation of an aggregate containing subaggregates, not
all .-hoices are evaluated before being checked for identical
bounds. (See test E43212B.)

All choices are evaluated before CONSTRAINT-ERROR is raised if a
bound r a nonnull rarge of a ronnull aggregate does not belonq to
an index subtype. (See test E43211B.)

Representation clauses.

An implementation might legitimately place restrictions on
representation clauses used by some of the tests. if a
representation clause is used by a test in a way that violates a
restriction, then tne implementation must reject it.

Enumeration representation clauses containing noncontiguous values
for enumeration types other than character and boolean ty'pes are
not supported. (See tests C355021..J, C3550?M. .N, and A39005F.)

Enumeration representation clauses containing noncontiguous values
for character types are not supported. (See tests C355071. .J,
C35507M. .N, and C55616A.)

Enumeration representation clauses for boolean types containing
representational values other than (FALSE => 0, TRUE => 1) are not

* - supported. (See tests C355081. .J and C35508M. .N.)

*Laig'ti clauses .,;th SIZE specifications for enumeration types are
riot suppc-ted. (See test A39005B.)

Lengh cause wih SORAGE SIZE specifications for access types
are niot supported. (See tests A39005C and C87B62B.)

Length clauses with S7TORAGE _SIZE specifications for task types are
riot supported. (See tests A39005D arid C87B62D.)

Length clauses witr SMALL specificatiors are not supported. (See
tests A39OO5E and CE7PC.)

R ecord representat on :lauses are not supported. (See test
A39005G. )

-AP&I&A'-



* CON F 1 URAT' ON 1 NKFOPM:2N

Lergtr c auses w:lr ir seclf cat crs c' der've: integer types
are not suppoc.ted. :See test C67B66A.)

. Pragmas,

Tre p ragma INLINE is rot supported -or procedures. The pragma
INLiNE Is rot sucported for functions. (See tests LA3004A,
LA3004E, EA3004C, EA3004D, CA3OV4E, and CA3004F.)

input/output.

The package SEQUENTIAL 10 cannot be instantiated with
unconstrained array types and record types with discriminants
ithout defaults. (See tests AE2101C, EE2201D, and EE2201E.)

The package DIRECT 10 cannot be instantiated with unconstrained
array types and record types with discriminants without defaults.
(See tests AE21OIH, EE2401D, and EE2401G.)

* Modes IN-FILE and OUTFILE are supported for SEQUENTIAL_10. (See
e tests CE2102D and CE2102E.)

Modes INFILE, OUTFILE, and INOUT FILE are supported for
DIRECT 10. (See tests CE2102F, CE21021, and CE2102J.1

RESET and DELETE are supported for SEQUENTIAL_10 and DIRECTIO.
(See tests CE2102G and CE2102K.J

Dynamic creation and deletion of files are supported for
SEQUENTIAL_10 and DIRECT-1O. (See tests CE2106A and CE2106B,)

Overwriting to a sequential file truncates the file to last
element written. (See test CE22088.)

An existing text file can be opened in OUT FILE mode, can be
created in OUT-FILE mode, and can be created in IN-FILE mode.
-See test EE2102C.)

More than one internal file can be associated with each external
file for text I/O for reading only. (See tests CE3111A..E (5
tests), CE3114E, and CE3115A.)

More than one internal file can be associated with each external
file f or sequential 1/0 for reading only. (See tests CE2107A..D
(4 tests), CE2110E, and CE211D.)

More than ore internal file can be associated with each external
fiie for direct 1/0 for reading only. (See tests CE2107F..I (5
tests, CE2110E, and CE21IIH.)

N
,2-6

0- - .- '.' ... , . - , -- - - - , - . ,- . . .



@ C0N~GUR T!0N :NFO0RAT:O

An nternal sequential access file and an internal direct access

file cannot be associated with a single external file for writing.
tSee test CE2107E.)

An external file associated with more than one internal file
cannot be deleted for SEQUEN]IAL_10, DIRECI_10, and TEXT 10. (See

-test CE211o .)

Temporary sequential files are given names. Temporary direct
files are given names. Temporary files given names are not
deleted when they are closed. (See tests CE2108A and CE2108C.)

Generics.

Generic subprogram declarations and bodies can be compiled in
separate compilations. (See tests CA1OI2A and CA2009F.)

Generic package declarations and bodies can be compiled in
separate compilations. (See tests CA2009C, BC3204C, and BC3205D.)

Generic unit bodies and their subunits can be cormpiled in separate
compilations. (See test CA3011A.)

-2

%.

-p2-

0'.

'p.., jw} :i G I' ' " '.Z . ' . ". v". 
"  

', "' .'''-',"-"." ,,'-. ._'

. ..pp,.'~ . .. " : " ' ' . ,' "' .'.,'.' ' . ''' '



-w

CHAPTER 3

TEST INFORMATION

3.1 TEST RESULTS

Version 1.9 of the ACVC comprises 3122 tests. When this compiler was
tested 24 tests had been withdrawn because of test errors. The AVF

* determined that 280 tests were inapplicable to this implementation. All
inapplicable tests were processed during validation testing except for 201
executable tests that use floating-point precision exceeding that supported
by the implementation. Modifications to the code, processing, or grading
for 10 tests were required to successfully demonstrate the test objective.
(See section 3.6.)

The AVF concludes that the testing results demonstrate acceptable
conformity to the Ada Standard.

3.2 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL
A B C D L

Passed 102 1048 1595 17 12 44 2818

Inapplicable 8 3 261 0 6 2 280

Withdrawr 3 2 18 0 1 0 24

TOTAL 113 1053 1874 17 19 46 3122

* 3-1



TEST INFORM AT IDN

3.3 5UMMARY CF TEST RESULTS BY CHAPTER

RESULT CHAPTER TOTAL

35 _6 __7 8_ 9 10 11 12 13 14

Passed 10 482 S37 244 166 98 137 327 131 36 234 3 233 .2818

Inapplicable 14 9l 138 4 0 0 6 0 6 0 0 0 21 280

Withdrawn 2 13 2 0 0 1 2 0 0 0 2 1 1 24

TOTAL 206 586 677 248 166 ?9 145 327 137 36 236 4 255 3122

3.4 'WITHDRAWN TESTS

The foilowing 24 tests were withdrawn from ACVC Version 1.9 at the time of
this validation:

B28003A E28005C C34004A C35502P A35902C
C35904A C35A03E C35AD3R C37213H C37213J
C37215C C37215E C37215G C37215H C38102C
C41402A C45614C A74106C C85018F C87BO4B
CC1311B BC3105A ADIA01A CE2401H

See Appendix D for the reason that each of these tests was withdrawn.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of features
that 3 compiler is not required by the Ada Standard to support. Others may
depend on the result of another test that is either inapplicable or
withdrawn. The appiicability of a test to an implementation is considered
each time a validation is attempted. A test that is inapplicable for one
validation attempt is not necessarily inapplicable for a subsequent
attempt. For this val idation attempt, 280 tests were inapplicable for the
reasons indicated:

C355021..J (2 tests), C35502M..N (2 tests), C35507]..J (2 tests),
C35507M..N 2 tests), C355081 .J (2 tests), C35508M..N (2 tests),

A39005F, and CS5B16A use enumeration representation clauses which
are not supported by this compiler.

C35702A uses SHORTFLOAT which is not supported by this
implementation.

3-2

K - .- -



.EST INFORMATION

* C357026 uses LONG FLOAT which is not supported by this
implementation.

A . A39005B and C87B62A use length clauses with SIZE specifications
for derived integer types or for enumeration types which are not
supported by this compiler.

A39005C..D (2 tests), £87862B and u87B62D use length clauses with
STORAGESIZE specifications for access types or for task types
which are not supported by this implementation.

A39005E and C87B62C use length clauses with SMALL specifications
which are not supported by this implementation.

A39005G uses a record representation clause which is not supported
by this compiler.

The following tests use LONGINIEGER, which is not supported by
this compiler:

C45231C C45304C C45502C C45503C C45504C
C45504F C45611C C45613C C45631C C45632C
B52004D C55B07A B55B09C

* C45231D requires a macro substitution for any predefined numeric
type other than INTEGER, SHORTINTEGER, LONG_INTEGER, FLOAT,
SHORT FLOAT, and LONG FLOAT. This compiler does not support any
such types.

045304A, C45504B and C456328 are ruled inapplicable for this
implementation as subtypes of numeric types are treated with the
same precision as the base type, hence intermediate results of the
arithmetic operations in these tests lie within the range of the
base type and so no exceptions are raised. This is in accordance
with AVO regulations. (See LRM 11.6(6))

. C45531M, C45531N, C45532M, and C45532N use fine 48-bit fixed-point
* base types which are not supported by this compiler.

C455310, C45531P, C455320, and C45532P use coarse 48-bit
fixed-point base types which are not supported by this compiler.

.86001D requires a predefined numeric type other than those
i defined by the Ada language in package STANDARD. There is no such
. type for this implementation.

C86001F redefines package SYSTEM, but TEXT ]0 is made obsolete by
this new definition in this implementation and the test cannot be

executed since the package REPORT is dependent on the package
[* TEXTJtO.

* 3-3



TES T 1N o0M7T2N

* CA3OC4E, EA3004C, and LA3004A use the INLINE pragma for
prcredures. which is not supported by this compiler.

CA3CC4F, EA3004D, and LA3004B use the INLINE pragma for functions,
whicr is not supported by this compiler.

AE2101C, EE220 D, and EE220IE use instantiations of package
SEQUENTIAL 10 with unconstrained array types and record types
having discriminants jithout defaults. These instantiations are
rejected by this compiler.

* AE210 H, EE2401D, and EE24O1G use instantiations of package
DIRECT 10 with unconstrained array types and record types having
discriminants without defaults. These instantiations are rejected
by this compiler.

, CE21O7B..E (4 tests), CE21O7G..1 (3 tests), CE21109, CE21I1D,
CE2111H, CE3111B..E (4 tests), and CE3114B are inapplicable
because multiple internal files cannot be associated with the same
external file. The proper exception is raised when multiple
access is attempted.

, The following 201 tests require a floating-point accuracy that
exceeds the maximum of !5 digits supported by this implementation:

C24113L. .Y (14 tests) C35705L . Y (14 tests)
m C35706L. Y (14 tests) C35707L. .Y (14 tests)

C35708L. .Y (14 tests) C35802L .Z (15 tests)
C45241L .Y (14 tests) C45321L. .Y (14 tests)
C45421L. .Y (14 tests) C45521L. .Z (15 tests)
C45524L. .Z (15 tests) C45621L. .Z (15 tests)
C45641L. .Y (14 tests) C46012L. .Z (15 tests)

3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS

It is expected that some tests will require modifications of code,
processing, or evaluation in order to compensate for legitimate
implementation behavior. Modifications are made by the AVF in cases where
legitimate implementation behavior prevents the successful completion of an
(otherwise) aorlicable test. Examples of such modifications include:
adding a length clause to alter the default size of a collection; splitting

* a Class B test into subtests so that all errors are detected; and
confirming that messages produced by an executable test demonstrate
conforming behavior that wasn't anticipated by the test (such as raising
one exception instead of another).

Modificatio-s were required for 8 Class B tests, and 2 Class C tests.

3-4

. -...



The {cllowing Class B tests .ere split because svntax errcrs Et one point

resulted in tre compi ler not detecting other errors in tre test:

E22003A 6240C7A B24009A B35302 E3800Y8
867001C E95032A B97103E

'- The following "lass C test evaluations were modiied for the reasons
indicated below:

C453049 is ruled passed as subtypes of numeric types are treated
with the same precision as the base type by this implementation,
hence intermediate results of the arithmetic operations in this
test lie within the range of the base type and no exceptions are
raised. This behaviour is in accordance i'ith AVO regulations.
(See LRM 11.6(6))

.. C4AO12B is ruled passed as it raises NUMERIC-ERROR which is now
accepted behaviour by the AVO.

'-.

3.7 ADDITIONAL TESTING INFORMATION

3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.9 produced by
the Siemens B52000 Ada Compiler was submitted to the AVF by the applicant
for review. Analysis of these results demonstrated that the compiler
successfully passed all applicable tests, and the compiler exhibited the
expected behavior on all inapplicable tests.

3.7.2 Test Method

Testing of the Siemens ES2000 Ada Compiler using ACVC Version 1.? was
* conducted on-site by a validation team from the AVF. The configuration

consisted of a Siemens 7.570P operating under B52000, V7.6

A magnetic tape containing all tests except for withdrawn tests and tests
requiring unsupported floating-point precisions was taken on-site by the
validation team for processing. Tests that make use of

" implementation-specific values were customized before being written to the
magnetic tape. Tests requiring mindifications during the prevalidation
testing were included in their modified form on the magnetic tape.

The contents of the magnetic tape were loaded directly onto the host

computer. After the test files were loaded to disk, the full set of tests
* was compiled and linked on the Siemens 7.570P, and all executable tests

;LW were linked and run.

%
* 3-5

N.



TEST INFORMATION

The compiler was tested using command scripts provided by Siemens AG,
Muenchen and reviewed by the validation team. The compiler was tested

using all default option settings except or the following:

Qplin Efect

566 Suppress listing by Ada linker of all
linked Ada compilation units.

Tests were compiled, linked, and executed (as appropriate) using a single

host computer using three batch queues in parallel. Test output,

compilation listings, and job logs were captured on magnetic tape and

archived, at the AVF. The listings examined on-site by the validation team

were also archived.

3.7.3 Test Site

* Testing was conducted at SIEMENS AG at Muenchen 83, Germany and was
completed on 5th March 1988.

3-6

%



P'.

.

.: APPENDIX A

: : DECLARATION OF CONFORMANCE

' Siemens A6, Muenchen has submitted the following

o, Declaration of Conformance concerning the Siemens

BS2000 Ada Compiler.

, 

%

4-.

.,4-
4"

4:-

4-

4-A-



7 O S

DECLARATION Of CONFORMANCE

Compiler Im plementor: Siemens AG, Muenchen
Ada Velidation Facil ity: IAflG m.W ept £J71
Ada Compiler Validation Capability (ACVC) Version: 1.9

Base Configuration

Base Compi ler N1ame and Version: Siemens P52000 Ada Compiler V1.1)
-Vhost Architecture ISA And OS&VER S Sieme ns 7 .5 7(PU S0 () 0/V 7. 6

laroet Arcthitecture ISA And OS&VER 9: Siemens 7.570P BS2000/V7.6

Derived Compiler Registration

Derived Compiler Name And Version: Same as above
Host Architecture ISA: 7.531, 7.536, 7,541, ?.551,

7,530, 7.550, 7 .560 ,
7. 56 1, 7. 57 1, 7. 550,

*7.560, 7.570, 7.580, 7.590,
47 7. 700

TagtArSeSe S 5VER 9: N:S 2 00 0V 7 .5 ,V 7 .6 , V8 .0,V 8 .5 , V 9 0V9.2
lare'Arc, SAAnd OS&VER 9:Same as [lost

-. Implerientor' s Declaration

1, the undersigned, representing Siemens AG, Muenchen, have implemented no
deliberatE extensions to the Ada Language Standard ANSI/MIL-STO-1815A, in
the compiler listed in this declaration. I declare that Siemens AG,
1Muenchen is the owner- of record of the Ada language compiler listed above
and, as such, is responsible Tor maintaining said compiler in conformance

* . to ANSI/MIL-SID-1815A. All certificates and registrations for Ada language
74 compier listed in this declaration shall be made only in the ow~ner's

corteat nae

SieDr aC to hen

* Ada fs a regiStered trademark of the United States Government
(Ada Joir~t program COt ice).

L L %



Owner's Declarati n

1, the undersigned, representing Siemens AG, Muenchen, take full
responsibility for implementation and maintenance of the Ada compiler
listed aboVe, and agree to the public disclosure of the final Validation
Summary Rerort. I further agree to continue to comply with the Ada
trademark policy, as defined by the Ada Joint Program Office. I declare
that all of the Ada language compilers listed, and their host/target
performance, are in compliance with the Ada Languagc Standard
ANSI/MIL-SD-IP15A.

S-7 
Date:

Siemers AG, Mu~chen

A

I%

I.

i

'1*

Ir

.. . . . . . .

. .. . . . . . . . . . . .

,'- ... .



%

APPENDIX B

APPENDIX F OF THE Ada STANDARD

The crlv a owed irm lementation dependencies correspond to implementation-
depencert prearnas, to certain machine-dependent conventions as mentioned in
chacter 13 oi the Ada Standard, and to certain allowed restrictions on
represertation clauses. The implementation-dependent characteristics of
the Siemens F.S.2000 Ada Compiler, V1.0, are described in the following
sections, which discuss topics in Appendix F of the Ada Standard.
Implemeniaticn-spec4ic portions of the package STANDARD are also included
in this appendix.

package STANDARD is

type INTEGER is range -2 147 483 647 .. 2 147 483 647;
type SHOPTINTEGER is range -32_768 .. 32 767;

t.-: .ype FLOAT is di g ts 15 range -21.0 E212 .. 2 I.0 E212;

type DUPATION is delta 21.OD E-14 range -131_071.0 .. 131_071.0;
-- DLRATION'SMALL 29.0#E-14;

end STANDARD;

at

.%



'

F. Implementation-Dependent Characteristics

The Ada language definition allows for certain machine-dependences in a controlled manner. No
machine-dependent syntax or semantic extensions or restrictions are allowed The only allo...,ed
implementation-dependences correspond to implementation-dependent pragmas and attributes,
certain machine-dependent conventions as mentioned in chapter 13, and certain allowed restric-
tions on representation clauses.

2 "This appendix summarizes all implementation-dependent characteristics of the Siemens BS2000 Ada
Compiler. it describes:

3 (1) The form, allowed places, and effect of every implementation-dependent pragma
(2) The name and the type of every implementation-dependent attribute.
(3) The specification of the package SYSTEM (see 13.7).

* (4) The list of all restrictions on representation clauses (see 13.1).
(5) The conventions used for any implementation-generated name denoting implementation-

dependent components (see 13.4).
(6) The interpretation of expressions that appear in address clauses, including those for

interrupts (see 13.5).
. (7) Any restriction on unchecked conversions (see 13.10.2).
. (8) Any implementation-dependent characteristics of the input-output packages (see 14).

F.1 Implementation-Dependent Pragmas

There are no implementation-defined pragmas.

2 The only language name accepted by pragma INTERFACE is ASSEMBLER

3 The only priority accepted by pragma PRIORITY is represented by an expression of the static value 0
(cf the definition of the subtype PRIORITY in package SYSTEM).

F.2 Implementation-Dependent Attributes

* There are no implementation-dependent attributes

%J %

I["" A'



* Implementation-Dependent Characteristics

F.3 Specification of the Package SYSTEM

package SYSTEM is

type ADDRESS is new INTEGER;
type NAME is (BS2000);
SYSTEM-NAME constant NAME = BS2000;

* ""STORAGE-UNIT : constant: = 8;
MEMORY-SIZE "constant'= 4-000-000;

System-Dependent Named Numbers:
MININT constant:= -1247-483-647;
MAXINT constant: = 2-147-483-647;
MAX-DIGITS constant:= 15;
MAX-MANTISSA constant'= 31;

-? FINE-DELTA constant • = 2.0**(-31);
* TICK constant:= 0.0001;

-- Other System-Dependent Declarations
subtype PRIORITY is INTEGER range 0 .. 0;

end SYSTEM;

F.4 Restrictions on Representation Clauses

1 Representation clauses are not yet supported

.:.5 Conventions for Implementation-Generated Names Denoting Implemen-
tation-Dependent Components in Record Representation Clauses

implementation-dependent components may be added to record objects by the compiler. These
components remain inaccessible tc' the user, i.e. they cannot be accessed via implementation-

.. generated names, in particular they cannot be referred to in record representation clauses.

F.6 Interpretation of Expressions Appearing in Address Clauses
,4,--.

" Address clauses are not yet supported.

0"



* imciementation-Depenrieit Characteristics

F.7 Restrictions on Unchecked Type Conversions

The Siemens BS2000 Ada compiler supports the generic function UNCHECKED-CONVERSION with
the following restriction:

2 ;The actual generic subtype corresponding to the formal generic type TARGET must not be an
unconstrained array type, and it must not be an unconstrained type with discriminants that have no
defaults. The instances gained from UNCHECKED-CONVERSION return a target value whose bit
pattern is a left-aligned copy of that of the source value. The number of bits transferred corresponds
to the size of the target subtype, If the size of the source value is greater than the size of the target
subtype, the-, the source value information is truncated on the right hand side, i.e. the low order
bits are ignored. If the size of the source value is not greater than the size of the target subtype,
then - again - as many bits are transferred as corresponds to the size of the target subtype, and no

::.Q padding with zeroes, spaces or other characters i, performed.

F.8 Implementation-Dependent Characteristics of the Input-Output Packages

F.8.1 Introduction

The SEQUENTIALIO, DIRECT-IO and TEXTIO packages are all written in Ada and they make calls on
BASIC-1O which is a "typeless" package working with addresses and byte counts. SEQUENTIAL-10
and DIRECT-IO are generic packages, also INTEGERIO, FIXEDIO, FLOAT-1O and ENUMERATION-1O
in TEXT-IO are generic.

2 The routines written in assembler language have the name ADARTSBx with x in 1 .. 9, A .. Q, while
the BASIC-1O routines have nearly the same names as in the input-output packages of Ada.

• F.8.2 Conventions for NAME and FORM

External files are supported by the SAM, ISAM, SYSDTA, SYSOUT and SYSLST BS2000 files where the
value of the parameter FORM of the CREATE and OPEN procedures determines which access method
is selected.

2 The set of allowable values of FORM is given below together with the type of BS2000 file
corresponding to it. Leading blanks and lower-case letters are not allowed in the FORM string.

3-value o' FORM BS2000 access method

A SAM Sequential Access Method
ISAM Indexed Sequential Access Method
SYSDTA The file (or device) associated with the BS2000 system file SYSDTA
SYSOUT The file (or terminal) associated with the 8S2000 system file SYSOUT
SYSLST The file (or printer) associated with the BS2000 system file SYSLST
SAM-PRINT Like SAM but with printer control characters in the first column (: e below)

* ISAMPRINT Like ISAM but with printe, control characters in the first column (see below)

- *%--'



S Implementation-Dependent Characteristics

4, Each input-output package operates on a subset of the allowable forms.

5 SAM, ISAM, SAM-PRINT and ISAMPRINT files are identified by the value of the parameter NAME of
the CREATE and OPEN procedures whose characters must conform to the BS2000 file naming
conventions as described below. The value of the parameter NAME is ignored for other values of
FORM.

6 The syntax associated with the string NAME is as follows

NAME = link-namej file-name
file-name = :cauid: $ user-id . name {. name }

Suser-id . name {. name)
$admin-name I
name {. name)

caLid = name-character
link-name = name-character name-character}
user-id = name-character { name-character)
admin-name = name-character { name-character }
name = name-character name-character)

name-character = upper-case-letterl digitl
special-character

special-character ::= $ I @ 1#1 -

7 BS2000 imposes the following additional restrictions upon the syntax of NAME.

1. The maximum length of a link-name or a user-id is eight characters.
2. The maximum length of a file-name starting with :cat-id: is 54 characters.
3. The maximum length of a file-name starting with Suser-id is 51 characters.
4. The maximum length of an admin-name is 47 characters unless it contains one or more

periods in which case the maximum length is 53 characters.
S5. The maximum length of a file-name starting with name is 41 characters.

6. The first character of a name must not be a special character, and the last character must not
be a hyphen.

7. A file-name must include at least one letter.

* Example of using TEXTIO:

with TEXTIO; use TEXTIO;
package FILE-MANAGEMENT is

SACTUALFILE " TEXTiO.FILETYPE;
ACTUALFILE2 TEXTIO.FILETYPE;
ACTUALFILE3 TEXTIO.FILETYPE;

begin
-- Create a BS2000-SAM file with name ASAM FILE

0

% %.--



* implementation-Dependent Characteristics

TEXTIO.CREATE (FILE = > ACTUALFILEI,
MODE = > OUT-FILE,

NAME = > *A.SAM.FILE',
FORM = > 'SAM');

K'. -- Create a BS2000-ISAM file with the link name ABCD and with file-name

-- AN.ISAM.FILE
-* BS2000 command: "/FILE AN.ISAM.FILE,LINK = ABCD" (Note: no '.').

TEXTIO.CREATE (FILE = >ACTUALFILE2,
" ', MODE = > OUT-FILE,
V NAME = > ".ABCD", -- Note: with'.'

FORM = > "ISAM");

-- Open the BS2000-SAM fi.e with link-name XYZ and with file-name A.SM.FILE
-- BS2000 command: '/FILE A.SAM.FILE,LINK = XYZ' (Note: no')').

TEXTIO.OPEN (FILE = >ACTUALFILE3,

0 MODE = > IN-FILE,
NAME = > ".XYZ", -- Note: with'.'
FORM = > "SAM");

end FILE-MANAGEMENT;

F.8.3 File management

1 This section describes the implementation restrictions which apply to the sequential, direct and text

input-output packages equally. The maximum number of objects which may be stored in an external

file is dependent upon the maximum number of records or the maxirnium number of blocks which

may be stored in its underlying BS2000 file. The values given below state this maximum for each

FORM provided that limits imposed by the system configuration are not otherwise reached. For the

direct and sequential input-output packages, each object is stored in a separate record or block; for

the text input-output package, each line is stored in a separate record.

2 FORM Maximum Number of Records / Blocks

SAM configuration dependent limit
ISAM 99 999 999 records

SAM-PRINT configuration dependent limit
* ISAMPRINT 99 999 999 records

SYSDTA configuration dependent limit.

SYSOUT configuration dependent limit
SYSLST csnliguration dependent limit

3,Two alternative record formats are available for ISAM and SAM files, varying and constant length.

TEXTIO always uses varying length records whereas DIRECT-1O and SEQUENTIALIO support both

formats. A varying length record format is used if an instance of direct or sequential input-output

packages uses unconstrained element-types Otherwise a fixed length record format is used where

_V the length equals the value of (ELEMENT TYPE'SIZE + 7) 8 (that are the number of bytes needed

for this special type).

"NS%
,..-



* Implementation- Dependent Charactertstics

4 The maximum size of the objects which can be stored in an external file is restricted. The universal
,k integer value which results from the application of the SIZE attribute to every object accessed by the

package must lie within a range which is dependent upon the FORM and whether constant or
varying size records are being used. The exception USE-ERROR is raised if this constraint is violated.

N

FORM constantvaryinc, OBJECT'SIZE (bits)

SAM constant 1.. 16384
SAM varying 1 .. 16352

N SAM-PRINT varying 1.. 16352
ISAM constant 1.. 16320
ISAM varying 1 .. 16288
ISAMPRINT varying 1 .. 16288
SYSDTA varying 1 .. 2 032
SYSOUT varying 1.. 2032
SYSLST varying 1.. 2032

* 6 The default value in TEXT-IO for the FORM parameter is SAM-PRINT, in SEQUENTIALIO it is SAM,
while in DIRECT-IO it is ISAM.

SAM and ISAM files with no null string for NAME are permanent files in that their lifetimes are
- independent of the currently running Ada program and of the BS2000 tasks in which they were

created. Permanent files may be closed in one BS2000 task and opened subsequently in the same or
another task without loss of their contents (for MODE = IN or IN-OUT).

A null string for NAME specifies an external file that is not accessible after the completion of the
main program (a temporary file).

*The BS2000 names for temporary files are

"#TEMP.xxxx.yymmdd.zzzzzz.nnnnnnn" with

xxxx " decimal number (tsn of the current BS2000 task)
', yymmdd " decimal number (current date)

zzzzzz = decimal number (time in seconds filled up with leading 0)
* nnnnnnn = decimal number (range 1000000 .. 9999999).

10 When a SAM or tSAM file (selected by the value of NAME) is opened, there is no check that the form.- of the BS2000 file corresponds to the value of the FORM parameter of the OPEN procedure. There is
no check either that the input-output package opening a SAM or ISAM file is the same package as

*' - the one which created the file. If either of these conditions is violated, the program may deliver
* unexpected results.

1 SYSDTA, SYSOUT and SYSLST files are temporary files whose lifetime ends with that of the BS2000

task which created them.

12 The SYSDTA, SYSOUT and SYSLST files are unique within a BS2000 task. SYSDTA and SYSOUT are
* opened by the elaboration of TEXTIO. SYSDTA is the FORM of the Ada STANDARD-INPUT file, while

SYSOUT is the FORM of the Ada STANDARD-OUTPUT file. The user may open SYSDTA at most once
at a time additionally to STANDARD-INPUT. Also only one file may be opened at a time with FORM
parameter SYSLST. Opeing a file with these FORM parameters causes a SYSFILE command for the
:S2000 system. Theref.-'. reading from the S2000 system file SYSDTA is equivalent to reading
from STANDARDINPUI, but both have their own FCB A close on a file with the FORM parameter

-* SYSDTA or SYSLST causes a redirection of the BS2000 system files SYSDTA and SYSLST to (PRIMARY)

L% 
"

• • ' q



i mplementation-Dependent Characteristics

via a SYSFILE command. The user may redirect SYSDTA or SYSLST to (PRIMARY), too, by opening a
file with the FORM parameter SYSDTA or SYSLST and NAME parameter (PRIMARY) A SYSOUT file
may not be opened or deleted because its redirection is impossible and STANDARD-OUTPUT is

" ' opened with the FORM parameter SYSOUT during the elaboration.

13 No assumptions should be made about the way objects are stored in the various BS2000 files except
as described for the TEXT-1O package. For example, the mapping of indices onto ISAM keys may
differ between different version,. oi the input-output packages.

F.8.3.1 SEQUENTIAL_10

1 . The value of the FORM parameter of the CREATE and OPEN procedures is restricted to SAM.

2 The package SEQUENTIALIO cannot be instantiated with unconstrained array types and
unconstrained record types with discriminants that have no defaults.

F.8.3.2 DIRECT_10

1 The value of the FORM parameter of the CREATE and OPEN procedures is restricted to ISAM.

2 The package DIRECTIO cannot be instantiated with unconstrained array types and unconstrained
record types with discriminants that have no defaults.

3 The value of an index may be set in the range 1 INTEGERLAST.

F.8.3.3 TEXT_10

The value of the FORM parameter of the CREATE procedure is restricted to SAM, ISAM, SAM-PRINT
and ISAMPRINT, while the OPEN procedure may use SYSLST and SYS:TA additionally.

*. 2 The lines contained in text files are variable in length in the range 1 . 2000 characters. The upper
,. bound for the subtype FIELD is 500;

* 3 The upper bound for the type COUNT is INTEGERLAST.

A
" In printable files (FORM = SAMPRINT, FORM = ISAMPRINT) hnes are stored in the second to 2001st

character of a BS2000 variable length file record. The ASCII characters of the Ada program are
represented by their corresponding EBCDIC characters in the BS2000 files. The first character of the
record is a printer control character where means line-feed and 'A' page feed. Thus BS2000 files

• created by a call to TEXT-1O can be printed using the /PRINT command (with SPACE = E) or displayed
using the EDOR and EDT text file editors. The printer control characters are used to implement the
line and page terminators and can be manipulated using the standard line and page control
procedures. The transfer of lines to BASIC-1O is done by NEW-LINE, NEW-PAGE CLOSE and RESET -,':",ior if a line is filled up.

N.0 d,
S ' . " ', . ' , = g . e . . " " - , ' : ," - . . e . ^ • " • , ,. . ' . . , . " . .. . .



* Implementation-Dependent Characteristics

5 An empty line after a page terminator is identified by an EBCDIC.NUL in the second column. Other
empty lines are identified by an EBCDIC.SOH in the first and a EBCDIC.BLANK in the second column.

Since TEXT-1O converts ASCINUL to EBCDIC.NUL this special character may not be used in the first
column of the first line of a new page as the only character in this line (that is the second column of

the BS2000 file).

6 Two FORM parameters (SAM and ISAM) may be used by TEXT-1O to support files without printer
control characters in the first column.

In these files the end of a line is interpreted as a line ierminator. A page terminator is an
EBCDIC.NUL in the last column of the line. Therefore the user may not output an EBCDIC.NUL to the

5i last column of a line without an incrementation of the current page by TEXT- 10 on reading the file
again. An EBCDIC.STX in the first column designates an empty line.

6 The MODE of the SYSLST file is restricted to OUT-FILE.
The MODE of the SYSDTA file is restricted to IN-FILE.

9 The standard input file has the FORM SYSDTA and the standard output file has the FORM SYSOUT.
* In the dialogue mode of BS2000 a call of NEW-PAGE on STANDARD-OUTPUT causes the deletion of

the screen and a call of NEW-LINE with an empty internal buffer causes the output of a line feed.

1 0 The transfer of characters from TEXT-1O to BASIC-1O is done line by line. All characters are stored in

an internal buffer. The line is displayed after calling PUT-LINE, NEW-LINE, NEW-PAGE, CLOSE and
RESET. On the other hand the terminal represents the two distinct files STANDARD-OUTPUT and
STANDARD-INPUT in one "file" (terminal). Therefore, a sequence of PUT - GET - PUT rout;ne calls
without calling NEW-LINE or NEW-PAGE causes the following display sequence at the terminal.

p 11 Example:

with TEXT-1O; use TEXT_10;
package DIALOGUE is

., begin

PUT (STANDARDOUTPUT, THE USER AT THE TERMINAL IS ");

GET (STANDARDINPUT, USER- NAME); -- the user enters "TOM WHO IS NOT"
PUT (STANDARD-OUTPUT, " CRAZY");
NEW LINE (STANDARDOUTPUT);

end DIALOGUE;

,.

• 2 Example of the interaction (characters typed by the user are italicized):

-- the user has to enter something, assume he enters "TOM WHO IS NOT"
*TOM WHO IS NOT
THE USER AT THE TERMINAL IS CRAZY

S "3 The user intented to get:

ITHE USER AT THE TERMINAL IS
* TOM WHO IS NOT
CRAZY



-~~ X- -'R -- r 7~a -

* lmplemnentation-Depenaern Characteristics

14 The user should use in those cases a sequence of PUT-LINE - GET - PUT - NEW LINE. Then the example
Would display:

THE USER AT THE TERMINAL IS
TOM WHO IS NOT

CRAZY

15 A text file read from a terminal (via SYSDTA) is handled like a file with FORM SAM, that means page
- terminators and empty lines are recognized by an EBCDIC.NUL or EBCDIC.STX as described above for

SAM files.

%W



"'4.
7 " ...

a.,'V _

a--; APPENDIX C

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent values, such

as the maximum length of an input line and invalid file names. A test that

makes use of such values is identified by the extension .TST in its file
name. Actual values to be substituted are represented by names that begin

.. with a dollar sign. A value must be substituted for each of these names
before the test is run. The values used for this validation are given
below.

Name and Meaninq ..-- -

$BIG_ID1 (l..239 => 'A', 240 '1')
Identifier the size of the
maximum input line length with
varying last character.

SBIG_1D2 (1..239 =) 'A', 240 = 2 '')
Identifier the size of the
maximum input line length with
varying last character.

$BIGID3 (. .120=>'A' ,121=>'3' ,122. .240=>'A')
Identifier the size of the
maximum input line length with
varying middle character.

* $EIGID4 (1.. 120:>'A' ,I1=>'4' ,122. .240=>'A')

SIdentifier the size of the
maximum input line length with
varying middle character.

SBIGINT LIT (I..237=>'0',238..240=>"298 )
An integer literal of value 298
with enough leading zeroes so
that it is the size of the
maximum line length.

C-I

0

*- *ba .,,a~a



%

Nare and Mearing Va ue

$EG1 235 " '0 236. 2 4C:'O.i u.iersa? real te:rl o;
va~ue 610.0 with enough leading

. zeroes to be the size cf the," maxi m i~ne ength.

$B; ST R 1N G 1: 2 12 1: A'  12 2 ...

A string litera which when
caterated ,ith BIG STRING2
yields the irage of BIG_]DI.

SEIG STRING2 (1:>'... ,2. .120:>A' 121:>', 122:>'...

A string literal which when
caterated to the end of
EIG STRINGI yields the image of
EIG.![II

$BLANKS (1-220 > '
A sequence o' blanks twenty

S characters less than the size
of the maximum line length.

$COUNT LAST 2_ 147_483647
A universal integer
literal whose value is
TEXTIO.COUNT'LAST.

7- $FIELD LAST 240
A universal integer
literal whose value is
TEXTI0.FIELD'LAST.

$FILE NAME VITH BAD CHARS BAD FILE NAME
An external file name that
either contains invalid
craracters or is too lorig

$ $FILE NAME _ITH - 'ILD CARD CHAR 1ILD*FILE*NAME
Ar external file name that
either cortains a wild card
character or is too long.

$GPEAT ER THAN-DURATION 131071.5
A universal real literal that
I l es between DURATION'BASE'LAST
and DUFAT!ON'LAST or any value

.. , in the rarge of DUr.ATION.

UP. ON

.-

0- o



N a Tr e a~ n i K' r.Y~ 1- - -' - - - - - - - - - - - - - - - - - - - - - - - - - ----- .~*.~'j i - ~ ~ - -

' '7C 7 ,C' (r

CGREATER TA N PCFA ~N E4E AK c*' ,-,I
A ur;, ,ers rea a tera: '1 at is
greater than jURATION' E •E^?T

.... AL FL. NAME1 . AF F'ILr N'RE
An eternai ile name wr.ch
cortairs inialid cha'acte-s.

$ILLEGPALEXTERNAL F :LE NAME2 NUCH-0O-L0NC-NAME-FOR-4-C0RECT-2S2000-F LE
An exterral fle name 6hich
Is too long.

$1NTE GER FIRST -2147_483647

A uriversal integer literal
whose value is INTEGER'FIRST,

"INTECER LAST 2147 483 647
A universal integer Iitt-al
whose value is INIECER'LAST.

$INTEGER LAST~PLUS_ 21 47_4E2_ 648
A UnIVersaI inte9e I iteral
,hcse value is INTEGER'LAST + 1.

$LESSTHAN_. URATION -131071.5
A universal real literal that
lies netween DURATION'BASE'FIRST

,.. and DURATION'F!RST or any value
in tne range of DURATION.

$LESSTHAN DURATIONRSE FIRST -200 000.0
A universal real literal that is
less than DURATION'EASE'FIRST,

A.. $NAXD7CVIS 15

P, a imum dg is supported for
* Koating-poirnt types.

$MAYNNLEN 240
a r, umum nput line le ngt h

pe-m:ted bv the impleme rtation

$ $MAX NT 2147483_647
A uriversal ir tecer lite-a
.hose value 1s MYSTE AX .

*,.',, Whose val PLU s T 147 483 648
A urn versa ir, tege i ter al

• whcSe Value S S-Y-r7EM.P ,- I ]N T +

0''
,,.',

p-.',\



." Name and Mear: ',__ 'a ue-

$MAXL N NT EASEDLITERAL 7 2 .. 3 4=: C, 3 . 24 :

A un i ve rsal iritemer based
i te-aI wose value s 9 1 1 #

with enough jeadiro zeroes in
the .art issa to be MAX- IN LEN
.ong.

SMAX LEN REAL -BSED_ LITERAL i.3:>"16:",4, 236:>'O' ,37. .40:F.E )
A universal real based literal
whose value is 16"F.E: with
enough leading zeroes in the
mantissa to be MAY IN LEN long.

"'-
SMIAX STRING L;TERAL ! > " A

A string literal of size
MAX iN LEN ncluding the quote
craracters.

"-:,"INN INT -2_ !47_483_647

A universal inteaer literal
wose value is SYSTEM.MINNT.

$NAME SNAME
I A name of a predefined numeric

type other than FLOAT, INTEGER,
SHORT FLOAT, SHORT_ INTEGER,
LONGJFLOAT, or LONG-INTEGER.

%% $NEG-BASEC_ INT 8V37777777_776#
A based integer literal whose
highest order nonzero bit
falls in the sign bit
position of the representation
for SYSTEM.MAXINT.

0

," • C-4



K

APPENDIX D

WIT HDRA4N TESTS

Some tests are withdrawn from the ACVC because they do not conform to the
Ada Standard. The following 24 tests had beei withdrawn at the time of
validation testing for the reasons indicated. A reference of the form
"AI-ddddd" is to an Ada Commentary.

928003A: A basic declaration (line 36) wrongly follows a later
declaration.

E2005C: This test requires that 'PRAGMA LIST (ON);' not appear
in a listing that has been suspended by a previous

/ "pragma LIST (OFF);"; the Ada Standard is not clear on
this point, and the matter will be reviewed by the ARG.

C34004A: The expression in line 168 wrongly yields a value
outside of the range of the target type T, raising
CONSTRAINT-ERROR.

C35502P: Equality operators in lines 62 and 69 should be
inequality operators.

A35902C: Line 17's assignment of the nomimal upper bound of a
fixed-point type to an object of that type raises
CONSTRAINT-ERROR, for that value lies outside of the
actual range of the type.

C35904A: The elaboration of the fixed-point subtype on line 28
wrongly raises CONSTRAINT-ERROR, because its upper bound
exceeds tnat of the type.

1W

N N

,D--

,:., *D - I



7 'T H.,R .N T E S 7

,3 SA , These tests assume that attribute 'MANTSSA retuns
and w: ~hen apP Ii ec to a f ixed-poi1nt t w 1 it M a nul I rarngc4,

but the Ada Standard doesn't support this assumption.

C37213H: The subtype declaration of SCONS in line 100 is wrongly
expected to raise an exception wnern elaborated.

C37213J: The aggregate in line 451 wrongly raises
CONSTRAINTRPOP.

C37215C, Various discriminant constraints are wrongly expected to
E, G, H: be incompatible with type CONS.

C38102C: The fixed-point conversion on line 23 wrongly raises
C41402A: CONSTRAINTERROR. 'STORAGE-SIZE is wrongly applied to an

object of an access type.

C45614C: REPORT.IDENT_1NT has an argument of the wrong type
(LONG-INTEGER).

A74106C, A bound specified in a fixed-point subtype declaration
C85018B, lies outside of that calculated for the base type,
C87BO4B, raising CONSTRAINTERROR. Errors of this sort occur at
CC1311E: lines 37 and 59 , 142 and 143, 16 and 4-3, and 252 and

253 of the four tests, respectively (and possibly
elsewhere).

BC31O5A: Lines 159..168 are wrongly expected to be illegal; they
are legal.

ADIAOIA: The declaration of subtype INT3 raises CONSTRAINT-ERROR
for implementations that select INT'SIZE to be 16 or
greater.

CE240IH: The record aggregates in lines 105 and 117 contain the
wrong values.

0

- .-... * .-.-. . .


